aboutsummaryrefslogtreecommitdiff
path: root/files/pl/web/http/overview/index.html
diff options
context:
space:
mode:
Diffstat (limited to 'files/pl/web/http/overview/index.html')
-rw-r--r--files/pl/web/http/overview/index.html179
1 files changed, 179 insertions, 0 deletions
diff --git a/files/pl/web/http/overview/index.html b/files/pl/web/http/overview/index.html
new file mode 100644
index 0000000000..62dbfcf35f
--- /dev/null
+++ b/files/pl/web/http/overview/index.html
@@ -0,0 +1,179 @@
+---
+title: HTTP - wiadomości ogólne
+slug: Web/HTTP/Overview
+tags:
+ - HTML
+ - HTTP
+ - Mechanika stron
+ - Wstęp
+translation_of: Web/HTTP/Overview
+original_slug: Web/HTTP/HTTP_wiadomosci_ogólne
+---
+<div>{{HTTPSidebar}}</div>
+
+<p class="summary"><span class="seoSummary"><strong>HTTP</strong> stanowi</span> {{Glossary("protokół")}}, który umożliwia przechwytywanie zasobów, np. dokumentów HTML. Stanowi <span class="seoSummary">podstawę każdej wymiany danych w Internecie i jest protokołem klient-serwer, co oznacza, że żądania są inicjowane przez odbiorcę, przeważnie przeglądarkę internetową. Kompletny dokument jest rekonstruowany z różnych przechwyconych subdokumentów, np. tekstu, opisu szablonu, obrazków, video, skryptów itd</span>.</p>
+
+<p><img alt="A Web document is the composition of different resources" src="https://mdn.mozillademos.org/files/13677/Fetching_a_page.png" style="height: 319px; width: 545px;"></p>
+
+<p>Klienci i serwery komunikują się poprzez wymianę pojedynczych komunikatów (w przeciwieństwie do strumienia danych). Komunikaty wysyłane przez klienta, przeważnie przeglądarkę internetową, nazywane są <em>żądaniami</em>, a wiadomości wysyłane w odpowiedzi przez serwer <em>odpowiedziami</em>.</p>
+
+<p><img alt="HTTP as an application layer protocol, on top of TCP (transport layer) and IP (network layer) and below the presentation layer." src="https://mdn.mozillademos.org/files/13673/HTTP%20&amp;%20layers.png" style="float: left; height: 299px; padding-bottom: 15px; padding-right: 20px; width: 418px;">Zaprojektowany na początku lat 90. HTTP jest protokołem elastycznym, który wyewoluował na przetrzeni czasu. Jest to protokół warstwy aplikacji, który jest wysyłany nad {{Glossary("TCP")}} lub nad połączeniem TCP zaszyfrowanym w {{Glossary("TLS")}}, chociaż dowolny, godny zaufania protokół transportu mógłby zostać teoretycznie użyty. Z powodu swojej rozszerzalności używany jest nie tylko do przechwytywania dokumentów hipertekstowych, ale również do obrazów i video, bądź do dodawania treści na serwery, jak dane wprowadzane do formularzy HTML. HTTP może być również używany do przechwytywania części dokumentów, aby na żądanie aktualizować strony WWW.</p>
+
+<h2 id="Komponenty_systemów_opartych_o_HTTP">Komponenty systemów opartych o HTTP </h2>
+
+<p>HTTP to protokół klient-serwer: żądania są wysyłane przez jedną jednostkę, agenta użytkownika (lub proxy w jego imieniu). Przeważnie użytkownika jest jednoznaczny z przeglądarką, ale tak naprawdę może być wszystkim, np. robotem przemierzającym sieć, by rozpowszechnić i utrzymywać indeks wyszukiwarki.</p>
+
+<p>Każde indywidualne żądanie jest wysyłane na serwer, który je obsługuje i dostarcza informację zwrotną, zwaną <em>odpowiedzią</em>. Pomiędzy klientem a serwerem znajduje się wiele jednostek, kolektywnie nazywanych {{Glossary("Proxy_server", "proxies")}}, które zajmują się różnymi operacjami i funkcjonują jako bramki lub np. {{Glossary("Cache", "caches")}}.</p>
+
+<p><img alt="Client server chain" src="https://mdn.mozillademos.org/files/13679/Client-server-chain.png"></p>
+
+<p>W rzeczywistości pomiędzy przeglądarką i serwerem istnieje więcej komputerów obsługujących żądania: są to routery, modemy itd. Dzięki temu, że układ sieci jest warstwowy, znajdują się one w warstwach sieci i transportu. HTTP znajduje się na samej górze, w warstwie aplikacji. Mimo, że diagnoza problemów pojawiających się sieci jest bardzo istotna, warstwy znajdujące się poniżej przeważnie są nieistotne przy opisie HTTP.</p>
+
+<h3 id="Klient_agent_użytkownika_user-agent">Klient: agent użytkownika (user-agent)</h3>
+
+<p><em>User-agent</em> to każde narzędzie, które działa w imieniu użytkownika. Najczęściej jest nim przeglądarka internetowa, mogą to byc także programy używane przez programistów do debugowania ich aplikacji.</p>
+
+<p>Przegladarka jest <strong>zawsze</strong> jednostką inicjującą żądanie. Nigdy nie jest nim serwer (jednakże na przestrzeni lat, niektóre mechanizmy zostały dodane, w celu symulacji wiadomości inicjowanych przez serwer)</p>
+
+<p>Aby zaprezentować stronę internetowa, przeglądarka wysyła orginalne żądanie, aby wydobyć dokument HTML, który reprezentuje tę stronę. Przeglądarka analizuje plik, robiąc tworząc dodatkowe żądania korespondujące ze skryptami, informacją o układzie strony do wyświetlenia (CSS), i pod zasobami zawartymi w stronie (najczęściej obrazy i wideo). Następnie przeglądarka łączy te zasoby aby zaprezentować uzytkownikowi kompletny dokument - stronę internetową. Skrypty wykonywane przez przeglądarkę mogą wydobywać więcej zasobów w kolejnych fazach oraz odpowiednio aktualizować stronę.</p>
+
+<p>Strona internetowa jest documentem hipertekstowym. To znaczy niektórę części wyświetlanego tekstu są linkami, które mogą być aktywowane (najczęściej przez kliknięcie) aby włączyć nową strone internetową, pozwalającymi uzytkownikowi kierować jego user-agentów i nawigować w sieci. Przeglądarka tłumaczy te wytyczne poprzez żądania HTTP a następnie interpretuje odpowiedzi HTTP aby przedstawić użytkownikowi jasną odpowiedź</p>
+
+<h3 id="The_Web_server">The Web server</h3>
+
+<p>On the opposite side of the communication channel, is the server, which <em>serves</em> the document as requested by the client. A server appears as only a single machine virtually: this is because it may actually be a collection of servers, sharing the load (load balancing) or a complex piece of software interrogating other computers (like cache, a DB server, or e-commerce servers), totally or partially generating the document on demand.</p>
+
+<p>A server is not necessarily a single machine, but several server software instances can be hosted on the same machine. With HTTP/1.1 and the {{HTTPHeader("Host")}} header, they may even share the same IP address.</p>
+
+<h3 id="Proxies">Proxies</h3>
+
+<p>Between the Web browser and the server, numerous computers and machines relay the HTTP messages. Due to the layered structure of the Web stack, most of these operate at the transport, network or physical levels, becoming transparent at the HTTP layer and potentially making a significant impact on performance. Those operating at the application layers are generally called <strong>proxies</strong>. These can be transparent, forwarding on the requests they receive without altering them in any way, or non-transparent, in which case they will change the request in some way before passing it along to the server. Proxies may perform numerous functions:</p>
+
+<ul>
+ <li>caching (the cache can be public or private, like the browser cache)</li>
+ <li>filtering (like an antivirus scan or parental controls)</li>
+ <li>load balancing (to allow multiple servers to serve the different requests)</li>
+ <li>authentication (to control access to different resources)</li>
+ <li>logging (allowing the storage of historical information)</li>
+</ul>
+
+<h2 id="Basic_aspects_of_HTTP">Basic aspects of HTTP</h2>
+
+<h3 id="HTTP_is_simple">HTTP is simple</h3>
+
+<p>HTTP is generally designed to be simple and human readable, even with the added complexity introduced in HTTP/2 by encapsulating HTTP messages into frames. HTTP messages can be read and understood by humans, providing easier testing for developers, and reduced complexity for newcomers.</p>
+
+<h3 id="HTTP_is_extensible">HTTP is extensible</h3>
+
+<p>Introduced in HTTP/1.0, <a href="/en-US/docs/Web/HTTP/Headers">HTTP headers</a> make this protocol easy to extend and experiment with. New functionality can even be introduced by a simple agreement between a client and a server about a new header's semantics.</p>
+
+<h3 id="HTTP_is_stateless_but_not_sessionless">HTTP is stateless, but not sessionless</h3>
+
+<p>HTTP is stateless: there is no link between two requests being successively carried out on the same connection. This immediately has the prospect of being problematic for users attempting to interact with certain pages coherently, for example, using e-commerce shopping baskets. But while the core of HTTP itself is stateless, HTTP cookies allow the use of stateful sessions. Using header extensibility, HTTP Cookies are added to the workflow, allowing session creation on each HTTP request to share the same context, or the same state.</p>
+
+<h3 id="HTTP_and_connections">HTTP and connections</h3>
+
+<p>A connection is controlled at the transport layer, and therefore fundamentally out of scope for HTTP. Though HTTP doesn't require the underlying transport protocol to be connection-based; only requiring it to be <em>reliable</em>, or not lose messages (so at minimum presenting an error). Among the two most common transport protocols on the Internet, TCP is reliable and UDP isn't. HTTP therefore relies on the TCP standard, which is connection-based.</p>
+
+<p>Before a client and server can exchange an HTTP request/response pair, they must establish a TCP connection, a process which requires several round-trips. The default behavior of HTTP/1.0 is to open a separate TCP connection for each HTTP request/response pair. This is less efficient than sharing a single TCP connection when multiple requests are sent in close succession.</p>
+
+<p>In order to mitigate this flaw, HTTP/1.1 introduced <em>pipelining</em> (which proved difficult to implement) and <em>persistent connections</em>: the underlying TCP connection can be partially controlled using the {{HTTPHeader("Connection")}} header. HTTP/2 went a step further by multiplexing messages over a single connection, helping keep the connection warm and more efficient.</p>
+
+<p>Experiments are in progress to design a better transport protocol more suited to HTTP. For example, Google is experimenting with <a href="https://en.wikipedia.org/wiki/QUIC">QUIC</a> which builds on UDP to provide a more reliable and efficient transport protocol.</p>
+
+<h2 id="What_can_be_controlled_by_HTTP">What can be controlled by HTTP</h2>
+
+<p>This extensible nature of HTTP has, over time, allowed for more control and functionality of the Web. Cache or authentication methods were functions handled early in HTTP history. The ability to relax the <em>origin constraint</em>, by contrast, has only been added in the 2010s.</p>
+
+<p>Here is a list of common features controllable with HTTP.</p>
+
+<ul>
+ <li><em><a href="/en-US/docs/Web/HTTP/Caching">Caching</a></em><br>
+ How documents are cached can be controlled by HTTP. The server can instruct proxies and clients, about what to cache and for how long. The client can instruct intermediate cache proxies to ignore the stored document.</li>
+ <li><em>Relaxing the origin constraint</em><br>
+ To prevent snooping and other privacy invasions, Web browsers enforce strict separation between Web sites. Only pages from the <strong>same origin</strong> can access all the information of a Web page. Though such constraint is a burden to the server, HTTP headers can relax this strict separation on the server side, allowing a document to become a patchwork of information sourced from different domains; there could even be security-related reasons to do so.</li>
+ <li><em>Authentication</em><br>
+ Some pages may be protected so that only specific users can access them. Basic authentication may be provided by HTTP, either using the {{HTTPHeader("WWW-Authenticate")}} and similar headers, or by setting a specific session using <a href="/en-US/docs/Web/HTTP/Cookies">HTTP cookies</a>.</li>
+ <li><em><a href="/en-US/docs/Web/HTTP/Proxy_servers_and_tunneling">Proxy and tunneling</a></em><br>
+ Servers or clients are often located on intranets and hide their true IP address from other computers. HTTP requests then go through proxies to cross this network barrier. Not all proxies are HTTP proxies. The SOCKS protocol, for example, operates at a lower level. Other protocols, like ftp, can be handled by these proxies.</li>
+ <li><em>Sessions</em><br>
+ Using HTTP cookies allows you to link requests with the state of the server. This creates sessions, despite basic HTTP being a state-less protocol. This is useful not only for e-commerce shopping baskets, but also for any site allowing user configuration of the output.</li>
+</ul>
+
+<h2 id="HTTP_flow">HTTP flow</h2>
+
+<p>When a client wants to communicate with a server, either the final server or an intermediate proxy, it performs the following steps:</p>
+
+<ol>
+ <li>Open a TCP connection: The TCP connection is used to send a request, or several, and receive an answer. The client may open a new connection, reuse an existing connection, or open several TCP connections to the servers.</li>
+ <li>Send an HTTP message: HTTP messages (before HTTP/2) are human-readable. With HTTP/2, these simple messages are encapsulated in frames, making them impossible to read directly, but the principle remains the same. For example:
+ <pre class="line-numbers language-html notranslate"><code class="language-html">GET / HTTP/1.1
+Host: developer.mozilla.org
+Accept-Language: fr</code></pre>
+ </li>
+ <li>Read the response sent by the server, such as:
+ <pre class="line-numbers language-html notranslate"><code class="language-html">HTTP/1.1 200 OK
+Date: Sat, 09 Oct 2010 14:28:02 GMT
+Server: Apache
+Last-Modified: Tue, 01 Dec 2009 20:18:22 GMT
+ETag: "51142bc1-7449-479b075b2891b"
+Accept-Ranges: bytes
+Content-Length: 29769
+Content-Type: text/html
+
+&lt;!DOCTYPE html... (here comes the 29769 bytes of the requested web page)</code></pre>
+ </li>
+ <li>Close or reuse the connection for further requests.</li>
+</ol>
+
+<p>If HTTP pipelining is activated, several requests can be sent without waiting for the first response to be fully received. HTTP pipelining has proven difficult to implement in existing networks, where old pieces of software coexist with modern versions. HTTP pipelining has been superseded in HTTP/2 with more robust multiplexing requests within a frame.</p>
+
+<h2 id="HTTP_Messages">HTTP Messages</h2>
+
+<p>HTTP messages, as defined in HTTP/1.1 and earlier, are human-readable. In HTTP/2, these messages are embedded into a binary structure, a <em>frame</em>, allowing optimizations like compression of headers and multiplexing. Even if only part of the original HTTP message is sent in this version of HTTP, the semantics of each message is unchanged and the client reconstitutes (virtually) the original HTTP/1.1 request. It is therefore useful to comprehend HTTP/2 messages in the HTTP/1.1 format.</p>
+
+<p>There are two types of HTTP messages, requests and responses, each with its own format.</p>
+
+<h3 id="Requests">Requests</h3>
+
+<p>An example HTTP request:</p>
+
+<p><img alt="A basic HTTP request" src="https://mdn.mozillademos.org/files/13687/HTTP_Request.png" style="height: 336px; width: 693px;"></p>
+
+<p>Requests consists of the following elements:</p>
+
+<ul>
+ <li>An HTTP <a href="/en-US/docs/Web/HTTP/Methods">method</a>, usually a verb like {{HTTPMethod("GET")}}, {{HTTPMethod("POST")}} or a noun like {{HTTPMethod("OPTIONS")}} or {{HTTPMethod("HEAD")}} that defines the operation the client wants to perform. Typically, a client wants to fetch a resource (using <code>GET</code>) or post the value of an <a href="/en-US/docs/Web/Guide/HTML/Forms">HTML form</a> (using <code>POST</code>), though more operations may be needed in other cases.</li>
+ <li>The path of the resource to fetch; the URL of the resource stripped from elements that are obvious from the context, for example without the {{Glossary("protocol")}} (<code>http://</code>), the {{Glossary("domain")}} (here, <code>developer.mozilla.org</code>), or the TCP {{Glossary("port")}} (here, <code>80</code>).</li>
+ <li>The version of the HTTP protocol.</li>
+ <li>Optional <a href="/en-US/docs/Web/HTTP/Headers">headers</a> that convey additional information for the servers.</li>
+ <li>Or a body, for some methods like <code>POST</code>, similar to those in responses, which contain the resource sent.</li>
+</ul>
+
+<h3 id="Responses">Responses</h3>
+
+<p>An example response:</p>
+
+<p><img alt="" src="https://mdn.mozillademos.org/files/13691/HTTP_Response.png" style="height: 494px; width: 758px;"></p>
+
+<p>Responses consist of the following elements:</p>
+
+<ul>
+ <li>The version of the HTTP protocol they follow.</li>
+ <li>A <a href="/en-US/docs/Web/HTTP/Status">status code</a>, indicating if the request was successful, or not, and why.</li>
+ <li>A status message, a non-authoritative short description of the status code.</li>
+ <li>HTTP <a href="/en-US/docs/Web/HTTP/Headers">headers</a>, like those for requests.</li>
+ <li>Optionally, a body containing the fetched resource.</li>
+</ul>
+
+<h2 id="APIs_based_on_HTTP">APIs based on HTTP</h2>
+
+<p>The most commonly used API based on HTTP is the {{domxref("XMLHttpRequest")}} API, which can be used to exchange data between a {{Glossary("user agent")}} and a server. The modern {{domxref("Fetch API")}} provides the same features with a more powerful and flexible feature set.</p>
+
+<p>Another API, <a href="/en-US/docs/Web/API/Server-sent_events">server-sent events</a>, is a one-way service that allows a server to send events to the client, using HTTP as a transport mechanism. Using the {{domxref("EventSource")}} interface, the client opens a connection and establishes event handlers. The client browser automatically converts the messages that arrive on the HTTP stream into appropriate {{domxref("Event")}} objects, delivering them to the event handlers that have been registered for the events' {{domxref("Event.type", "type")}} if known, or to the {{domxref("EventSource.onmessage", "onmessage")}} event handler if no type-specific event handler was established.</p>
+
+<h2 id="Conclusion">Conclusion</h2>
+
+<p>HTTP is an extensible protocol that is easy to use. The client-server structure, combined with the ability to simply add headers, allows HTTP to advance along with the extended capabilities of the Web.</p>
+
+<p>Though HTTP/2 adds some complexity, by embedding HTTP messages in frames to improve performance, the basic structure of messages has stayed the same since HTTP/1.0. Session flow remains simple, allowing it to be investigated, and debugged with a simple <a href="/en-US/docs/Tools/Network_Monitor">HTTP message monitor</a>.</p>