1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
|
---
title: Transformationsfunktionen
slug: Web/CSS/transform-function
tags:
- CSS
- CSS Data Type
- CSS Transforms
- Data Type
- Layout
- NeedsTranslation
- Reference
- TopicStub
translation_of: Web/CSS/transform-function
---
<div>{{CSSRef}}</div>
<p>The <strong><code><transform-function></code></strong> <a href="/en-US/docs/Web/CSS">CSS</a> <a href="/en-US/docs/Web/CSS/CSS_Types">data type</a> represents a transformation that affects an element's appearance. Transformation <a href="/en-US/docs/Web/CSS/CSS_Functions">functions</a> can rotate, resize, distort, or move an element in 2D or 3D space. It is used in the {{cssxref("transform")}} property.</p>
<h2 id="Syntax">Syntax</h2>
<p>The <code><transform-function></code> data type is specified using one of the transformation functions listed below. Each function applies a geometric operation in either 2D or 3D.</p>
<h3 id="Matrix_transformation">Matrix transformation</h3>
<dl>
<dt><code><a href="/en-US/docs/Web/CSS/transform-function/matrix">matrix()</a></code></dt>
<dd>Describes a homogeneous 2D transformation matrix.</dd>
<dt><code><a href="/en-US/docs/Web/CSS/transform-function/matrix3d">matrix3d()</a></code></dt>
<dd>Describes a 3D transformation as a 4×4 homogeneous matrix.</dd>
</dl>
<h3 id="Perspective">Perspective</h3>
<dl>
<dt><code><a href="/en-US/docs/Web/CSS/transform-function/perspective">perspective()</a></code></dt>
<dd>Sets the distance between the user and the z=0 plane.</dd>
</dl>
<h3 id="Rotation">Rotation</h3>
<dl>
<dt><code><a href="/en-US/docs/Web/CSS/transform-function/rotate">rotate()</a></code></dt>
<dd>Rotates an element around a fixed point on the 2D plane.</dd>
<dt><code><a href="/en-US/docs/Web/CSS/transform-function/rotate3d">rotate3d()</a></code></dt>
<dd>Rotates an element around a fixed axis in 3D space.</dd>
<dt><code><a href="/en-US/docs/Web/CSS/transform-function/rotateX">rotateX()</a></code></dt>
<dd>Rotates an element around the horizontal axis.</dd>
<dt><code><a href="/en-US/docs/Web/CSS/transform-function/rotateY">rotateY()</a></code></dt>
<dd>Rotates an element around the vertical axis.</dd>
<dt><code><a href="/en-US/docs/Web/CSS/transform-function/rotateZ">rotateZ()</a></code></dt>
<dd>Rotates an element around the z-axis.</dd>
</dl>
<h3 id="Scaling_resizing">Scaling (resizing)</h3>
<dl>
<dt><code><a href="/en-US/docs/Web/CSS/transform-function/scale">scale()</a></code></dt>
<dd>Scales an element up or down on the 2D plane.</dd>
<dt><code><a href="/en-US/docs/Web/CSS/transform-function/scale3d">scale3d()</a></code></dt>
<dd>Scales an element up or down in 3D space.</dd>
<dt><code><a href="/en-US/docs/Web/CSS/transform-function/scaleX">scaleX()</a></code></dt>
<dd>Scales an element up or down horizontally.</dd>
<dt><code><a href="/en-US/docs/Web/CSS/transform-function/scaleY">scaleY()</a></code></dt>
<dd>Scales an element up or down vertically.</dd>
<dt><code><a href="/en-US/docs/Web/CSS/transform-function/scaleZ">scaleZ()</a></code></dt>
<dd>Scales an element up or down along the z-axis.</dd>
</dl>
<h3 id="Skewing_distortion">Skewing (distortion)</h3>
<dl>
<dt><code><a href="/en-US/docs/Web/CSS/transform-function/skew">skew()</a></code></dt>
<dd>Skews an element on the 2D plane.</dd>
<dt><code><a href="/en-US/docs/Web/CSS/transform-function/skewX">skewX()</a></code></dt>
<dd>Skews an element in the horizontal direction.</dd>
<dt><code><a href="/en-US/docs/Web/CSS/transform-function/skewY">skewY()</a></code></dt>
<dd>Skews an element in the vertical direction.</dd>
</dl>
<h3 id="Translation_moving">Translation (moving)</h3>
<dl>
<dt><code><a href="/en-US/docs/Web/CSS/transform-function/translate">translate()</a></code></dt>
<dd>Translates an element on the 2D plane.</dd>
<dt><code><a href="/en-US/docs/Web/CSS/transform-function/translate3d">translate3d()</a></code></dt>
<dd>Translates an element in 3D space.</dd>
<dt><code><a href="/en-US/docs/Web/CSS/transform-function/translateX">translateX()</a></code></dt>
<dd>Translates an element horizontally.</dd>
<dt><code><a href="/en-US/docs/Web/CSS/transform-function/translateY">translateY()</a></code></dt>
<dd>Translates an element vertically.</dd>
<dt><code><a href="/en-US/docs/Web/CSS/transform-function/translateZ">translateZ()</a></code></dt>
<dd>Translates an element along the z-axis.</dd>
</dl>
<h2 id="Description">Description</h2>
<p>Various coordinate models can be used to describe an HTML element's size and shape, as well as any transformations applied to it. The most common is the <a href="https://en.wikipedia.org/wiki/Cartesian_coordinate_system">Cartesian coordinate system</a>, although <a href="https://en.wikipedia.org/wiki/Homogeneous_coordinates">homogeneous coordinates</a> are also sometimes used.</p>
<h3 id="Cartesian_coordinates">Cartesian coordinates</h3>
<p><a href="/@api/deki/files/5796/=coord_in_R2.png"><img src="/files/3438/coord_in_R2.png" style="float: right;"></a></p>
<p>In the Cartesian coordinate system, a two-dimensional point is described using two values: an x coordinate (abscissa) and a y coordinate (ordinate). This is represented by the vector notation <code>(x, y)</code>.</p>
<p>In CSS (and most computer graphics), the origin <code>(0, 0)</code> represents the<em> top-left</em> corner of any element. Positive coordinates are down and to the right of the origin, while negative ones are up and to the left. Thus, a point that's 2 units to the right and 5 units down would be <code>(2, 5)</code>, while a point 3 units to the left and 12 units up would be <code>(-3, -12)</code>.</p>
<h3 id="Transformation_functions">Transformation functions</h3>
<p>Transformation functions alter the appearance of an element by manipulating the values of its coordinates. A linear transformation function is described using a 2×2 matrix, like this:</p>
<p style="text-align: center;"><math> <mfenced> <mtable> <mtr><mtd><mi>a</mi></mtd><mtd><mi>c</mi></mtd></mtr> <mtr><mtd><mi>b</mi></mtd><mtd><mi>d</mi></mtd></mtr> </mtable> </mfenced> </math></p>
<p>The function is applied to an element by using matrix multiplication. Thus, each coordinate changes based on the values in the matrix:</p>
<p style="text-align: center;"><math> <mfenced> <mtable> <mtr><mtd><mi>a</mi></mtd><mtd><mi>c</mi></mtd></mtr> <mtr><mtd><mi>b</mi></mtd><mtd><mi>d</mi></mtd></mtr> </mtable> </mfenced> <mfenced> <mtable> <mtr><mtd><mi>x</mi></mtd></mtr><mtr><mtd><mi>y</mi></mtd></mtr> </mtable> </mfenced> <mo>=</mo> <mfenced> <mtable> <mtr> <mtd><mi>a</mi><mi>x</mi><mo>+</mo><mi>c</mi><mi>y</mi></mtd> </mtr> <mtr> <mtd><mi>b</mi><mi>x</mi><mo>+</mo><mi>d</mi><mi>y</mi></mtd> </mtr> </mtable> </mfenced> </math></p>
<p>It is even possible to apply several transformations in a row:</p>
<p style="text-align: center;"><math> <mfenced> <mtable> <mtr> <mtd><msub><mi>a</mi><mn>1</mn></msub></mtd> <mtd><msub><mi>c</mi><mn>1</mn></msub></mtd> </mtr> <mtr> <mtd><msub><mi>b</mi><mn>1</mn></msub></mtd> <mtd><msub><mi>d</mi><mn>1</mn></msub></mtd> </mtr> </mtable> </mfenced> <mfenced> <mtable> <mtr> <mtd><msub><mi>a</mi><mn>2</mn></msub></mtd> <mtd><msub><mi>c</mi><mn>2</mn></msub></mtd> </mtr> <mtr> <mtd><msub><mi>b</mi><mn>2</mn></msub></mtd> <mtd><msub><mi>d</mi><mn>2</mn></msub></mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced> <mtable> <mtr> <mtd> <msub><mi>a</mi><mn>1</mn></msub> <msub><mi>a</mi><mn>2</mn></msub> <mo>+</mo> <msub><mi>c</mi><mn>1</mn></msub> <msub><mi>b</mi><mn>2</mn></msub> </mtd> <mtd> <msub><mi>a</mi><mn>1</mn></msub> <msub><mi>c</mi><mn>2</mn></msub> <mo>+</mo> <msub><mi>c</mi><mn>1</mn></msub> <msub><mi>d</mi><mn>2</mn></msub> </mtd> </mtr> <mtr> <mtd> <msub><mi>b</mi><mn>1</mn></msub> <msub><mi>a</mi><mn>2</mn></msub> <mo>+</mo> <msub><mi>d</mi><mn>1</mn></msub> <msub><mi>b</mi><mn>2</mn></msub> </mtd> <mtd> <msub><mi>b</mi><mn>1</mn></msub> <msub><mi>c</mi><mn>2</mn></msub> <mo>+</mo> <msub><mi>d</mi><mn>1</mn></msub> <msub><mi>d</mi><mn>2</mn></msub> </mtd> </mtr> </mtable> </mfenced> </math></p>
<p>With this notation, it is possible to describe, and therefore compose, most common transformations: rotations, scaling, or skewing. (In fact, all transformations that are linear functions can be described.) Composite transformations are effectively applied in order from right to left.</p>
<p>However, one major transformation is not linear, and therefore must be special-cased when using this notation: translation. The translation vector <code>(tx, ty)</code> must be expressed separately, as two additional parameters.</p>
<div class="note">
<p><strong>Note:</strong> Though trickier than Cartesian coordinates, <a class="external" href="https://en.wikipedia.org/wiki/Homogeneous_coordinates">homogeneous coordinates</a> in <a class="external" href="https://en.wikipedia.org/wiki/Projective_geometry">projective geometry</a> lead to 3×3 transformation matrices, and can simply express translations as linear functions.</p>
</div>
<h2 id="Examples">Examples</h2>
<h3 id="Transform_function_comparison">Transform function comparison</h3>
<p>The following example provides a 3D cube created from DOM elements and transforms, and a select menu allowing you to choose different transform functions to transform the cube with, so you can compare the effects of the different types.</p>
<p>Choose one, and the transform is applied to the cube; after 2 seconds, the cube reverts back to its starting state. The cube's starting state is slightly rotated using <code>transform3d()</code>, to allow you to see the effect of all the transforms.</p>
<h4 id="HTML">HTML</h4>
<pre class="brush: html notranslate"><main>
<section id="example-element">
<div class="face front">1</div>
<div class="face back">2</div>
<div class="face right">3</div>
<div class="face left">4</div>
<div class="face top">5</div>
<div class="face bottom">6</div>
</section>
<div class="select-form">
<label>Select a transform function</label>
<select>
<option selected>Choose a function</option>
<option>rotate(360deg)</option>
<option>rotateX(360deg)</option>
<option>rotateY(360deg)</option>
<option>rotateZ(360deg)</option>
<option>rotate3d(1, 1, 1, 90deg)</option>
<option>scale(1.5)</option>
<option>scaleX(1.5)</option>
<option>scaleY(1.5)</option>
<option>scaleZ(1.5)</option>
<option>scale3d(1, 1.5, 1.5)</option>
<option>skew(17deg, 13deg)</option>
<option>skewX(17deg)</option>
<option>skewY(17deg)</option>
<option>translate(100px, 100px)</option>
<option>translateX(100px)</option>
<option>translateY(100px)</option>
<option>translateZ(100px)</option>
<option>translate3d(50px, 50px, 50px)</option>
<option>perspective(200px)</option>
<option>matrix(1, 2, -1, 1, 80, 80)</option>
<option>matrix3d(1,0,0,0,0,1,3,0,0,0,1,0,50,100,0,1.1)</option>
</select>
</div>
</main></pre>
<h4 id="CSS">CSS</h4>
<pre class="brush: css notranslate">main {
width: 400px;
height: 200px;
padding: 50px;
background-image: linear-gradient(135deg, white, cyan, white);
}
#example-element {
width: 100px;
height: 100px;
transform-style: preserve-3d;
transition: transform 1.5s;
transform: rotate3d(1, 1, 1, 30deg);
}
.face {
display: flex;
align-items: center;
justify-content: center;
width: 100%;
height: 100%;
position: absolute;
backface-visibility: inherit;
font-size: 60px;
color: #fff;
}
.front {
background: rgba(90,90,90,.7);
transform: translateZ(50px);
}
.back {
background: rgba(0,210,0,.7);
transform: rotateY(180deg) translateZ(50px);
}
.right {
background: rgba(210,0,0,.7);
transform: rotateY(90deg) translateZ(50px);
}
.left {
background: rgba(0,0,210,.7);
transform: rotateY(-90deg) translateZ(50px);
}
.top {
background: rgba(210,210,0,.7);
transform: rotateX(90deg) translateZ(50px);
}
.bottom {
background: rgba(210,0,210,.7);
transform: rotateX(-90deg) translateZ(50px);
}
.select-form {
margin-top: 50px;
}</pre>
<h4 id="JavaScript">JavaScript</h4>
<pre class="brush: js notranslate">const selectElem = document.querySelector('select');
const example = document.querySelector('#example-element');
selectElem.addEventListener('change', () => {
if(selectElem.value === 'Choose a function') {
return;
} else {
example.style.transform = `rotate3d(1, 1, 1, 30deg) ${selectElem.value}`;
setTimeout(function() {
example.style.transform = 'rotate3d(1, 1, 1, 30deg)';
}, 2000)
}
})</pre>
<h4 id="Result">Result</h4>
<p>{{EmbedLiveSample('Transform_function_comparison', '100%', 300)}}</p>
<h2 id="Specifications">Specifications</h2>
<table class="standard-table">
<thead>
<tr>
<th scope="col">Specification</th>
<th scope="col">Status</th>
<th scope="col">Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>{{SpecName('CSS Transforms 2', '#transform-functions', '<transform-function>')}}</td>
<td>{{Spec2('CSS Transforms 2')}}</td>
<td>Added 3D transform functions.</td>
</tr>
<tr>
<td>{{SpecName('CSS3 Transforms', '#transform-functions', '<transform-function>')}}</td>
<td>{{Spec2('CSS3 Transforms')}}</td>
<td>Initial definition</td>
</tr>
</tbody>
</table>
<h2 id="Browser_compatibility">Browser compatibility</h2>
<p>{{Compat("css.types.transform-function")}}</p>
<h2 id="See_also">See also</h2>
<ul>
<li>CSS {{cssxref("transform")}} property</li>
</ul>
|