aboutsummaryrefslogtreecommitdiff
path: root/files/ko/conflicting/web/javascript/reference/operators_7c8eb9475d97a4a734c5991857698560/index.html
blob: 4cc5ab7b5a3b0a7a70c4e183892729a057617437 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
---
title: 비트 연산자
slug: Web/JavaScript/Reference/Operators/Bitwise_Operators
tags:
  - JavaScript
  - Operator
  - Reference
translation_of: Web/JavaScript/Reference/Operators
translation_of_original: Web/JavaScript/Reference/Operators/Bitwise_Operators
---
<div>{{jsSidebar("Operators")}}</div>

<p><strong>비트 연산자</strong>는 피연산자를 10진수, 16진수, 8진수가 아니라, 32개의 비트(0과 1) 집합으로 취급합니다. 예를 들어, 10진수 9의 2진수 표기법은 1001입니다. 이렇게, 비트 연산자는 값의 2진수 표현을 사용해 연산하지만, 결과는 표준 JavaScript 숫자 값으로 반환합니다.</p>

<div>{{EmbedInteractiveExample("pages/js/expressions-bitwiseoperators.html")}}</div>



<p>다음은 JavaScript의 비트 연산자를 요약한 표입니다.</p>

<table class="standard-table">
 <tbody>
  <tr>
   <th>연산자</th>
   <th>사용방법</th>
   <th>설명</th>
  </tr>
  <tr>
   <td><a href="#Bitwise_AND">비트 AND</a></td>
   <td><code>a &amp; b</code></td>
   <td>피연산자를 비트로 바꿨을 때 각각 대응하는 비트가 모두 1이면 그 비트값에 1을 반환.</td>
  </tr>
  <tr>
   <td><a href="#Bitwise_OR">비트 OR</a></td>
   <td><code>a | b</code></td>
   <td>피연산자를 비트로 바꿨을 때 각각 대응하는 비트가 모두 1이거나 한 쪽이 1이면 1을 반환.</td>
  </tr>
  <tr>
   <td><a href="#Bitwise_XOR">비트 XOR</a></td>
   <td><code>a ^ b</code></td>
   <td>피연산자를 비트로 바꿨을 때 대응하는 비트가 서로 다르면 1을 반환.</td>
  </tr>
  <tr>
   <td><a href="#Bitwise_NOT">비트 NOT</a></td>
   <td><code>~ a</code></td>
   <td>피연산자의 반전된 값을 반환.</td>
  </tr>
  <tr>
   <td><a href="#Left_shift">왼쪽 시프트</a></td>
   <td><code>a &lt;&lt; b</code></td>
   <td>Shifts <code>a</code> in binary representation <code>b</code> (&lt; 32) bits to the left, shifting in zeros from the right.</td>
  </tr>
  <tr>
   <td><a href="#Right_shift">부호 유지 오른쪽 시프트</a></td>
   <td><code>a &gt;&gt; b</code></td>
   <td>Shifts <code>a</code> in binary representation <code>b</code> (&lt; 32) bits to the right, discarding bits shifted off.</td>
  </tr>
  <tr>
   <td><a href="#Unsigned_right_shift">부호 버림 오른쪽 시프트</a></td>
   <td><code>a &gt;&gt;&gt; b</code></td>
   <td>Shifts <code>a</code> in binary representation <code>b</code> (&lt; 32) bits to the right, discarding bits shifted off, and shifting in zeros from the left.</td>
  </tr>
 </tbody>
</table>

<h2 id="부호_있는_32비트_정수">부호 있는 32비트 정수</h2>

<p>The operands of all bitwise operators are converted to signed 32-bit integers in two's <a href="https://en.wikipedia.org/wiki/Method_of_complements">complement format</a>, except for zero-fill right shift which results in an unsigned 32-bit integer.</p>

<p><em>Two's complement format</em> means that a number's negative counterpart (e.g. <code>5</code> vs. <code>-5</code>) is all the number's bits inverted (bitwise NOT of the number, or <em>ones' complement</em> of the number) plus one.</p>

<p>For example, the following encodes the integer <code>314</code>:</p>

<pre>00000000000000000000000100111010
</pre>

<p>The following encodes <code>~314</code>, i.e. the one's complement of <code>314</code>:</p>

<pre>11111111111111111111111011000101
</pre>

<p>Finally, the following encodes <code>-314,</code> i.e. the two's complement of <code>314</code>:</p>

<pre>11111111111111111111111011000110
</pre>

<p>The two's complement guarantees that the left-most bit is 0 when the number is positive and 1 when the number is negative. Thus, it is called the <em>sign bit</em>.</p>

<p>The number <code>0</code> is the integer that is composed completely of 0 bits.</p>

<pre>0 (base 10) = 00000000000000000000000000000000 (base 2)
</pre>

<p>The number <code>-1</code> is the integer that is composed completely of 1 bits.</p>

<pre>-1 (base 10) = 11111111111111111111111111111111 (base 2)
</pre>

<p>The number <code>-2147483648</code> (hexadecimal representation: <code>-0x80000000</code>) is the integer that is composed completely of 0 bits except the first (left-most) one.</p>

<pre>-2147483648 (base 10) = 10000000000000000000000000000000 (base 2)
</pre>

<p>The number <code>2147483647</code> (hexadecimal representation: <code>0x7fffffff</code>) is the integer that is composed completely of 1 bits except the first (left-most) one.</p>

<pre>2147483647 (base 10) = 01111111111111111111111111111111 (base 2)
</pre>

<p>The numbers <code>-2147483648</code> and <code>2147483647</code> are the minimum and the maximum integers representable throught a 32bit signed number.</p>

<h2 id="비트_논리_연산자">비트 논리 연산자</h2>

<p>비트 논리 연산자는 다음과 같이 사용됩니다.</p>

<ul>
 <li>피연산자는 32비트 정수로 변환되고, 이진법으로 표현됩니다 (0과 1).</li>
 <li>이진법으로 표현된 첫 번째 피연산자는 두 번째 피연산자와 쌍을 이룹니다: 첫 번째는 첫 번째 비트끼리, 두 번째는 두 번째 비트끼리...</li>
 <li>연산자는 각각의 비트쌍에 적용되고, 결과 또한 이진법으로 구성됩니다.</li>
</ul>

<h3 id="비트_AND"><a id="Bitwise_AND" name="Bitwise_AND">&amp; (비트 AND)</a></h3>

<p>비트 연산자 AND를 비트 쌍으로 실행합니다.</p>

<p>Performs the AND operation on each pair of bits. <code>a</code> AND <code>b</code> yields 1 only if both <code>a</code> and <code>b</code> are 1. The truth table for the AND operation is:</p>

<table class="standard-table">
 <tbody>
  <tr>
   <td class="header">a</td>
   <td class="header">b</td>
   <td class="header">a AND b</td>
  </tr>
  <tr>
   <td>0</td>
   <td>0</td>
   <td>0</td>
  </tr>
  <tr>
   <td>0</td>
   <td>1</td>
   <td>0</td>
  </tr>
  <tr>
   <td>1</td>
   <td>0</td>
   <td>0</td>
  </tr>
  <tr>
   <td>1</td>
   <td>1</td>
   <td>1</td>
  </tr>
 </tbody>
</table>

<pre>     9 (base 10) = 00000000000000000000000000001001 (base 2)
    14 (base 10) = 00000000000000000000000000001110 (base 2)
                   --------------------------------
14 &amp; 9 (base 10) = 00000000000000000000000000001000 (base 2) = 8 (base 10)
</pre>

<p>Bitwise ANDing any number <code>x</code> with <code>0</code> yields <code>0</code>. <span style="letter-spacing: -0.00278rem;">Bitwise ANDing any number <code>x</code> with <code>-1</code> yields <code>x</code>.</span></p>

<h3 id="비트_OR"><a id="Bitwise_OR" name="Bitwise_OR">| (비트 OR)</a></h3>

<p>Performs the OR operation on each pair of bits. <code>a</code> OR <code>b</code> yields 1 if either <code>a</code> or <code>b</code> is 1. The truth table for the OR operation is:</p>

<table class="standard-table">
 <tbody>
  <tr>
   <td class="header">a</td>
   <td class="header">b</td>
   <td class="header">a OR b</td>
  </tr>
  <tr>
   <td>0</td>
   <td>0</td>
   <td>0</td>
  </tr>
  <tr>
   <td>0</td>
   <td>1</td>
   <td>1</td>
  </tr>
  <tr>
   <td>1</td>
   <td>0</td>
   <td>1</td>
  </tr>
  <tr>
   <td>1</td>
   <td>1</td>
   <td>1</td>
  </tr>
 </tbody>
</table>

<pre>     9 (base 10) = 00000000000000000000000000001001 (base 2)
    14 (base 10) = 00000000000000000000000000001110 (base 2)
                   --------------------------------
14 | 9 (base 10) = 00000000000000000000000000001111 (base 2) = 15 (base 10)
</pre>

<p>Bitwise ORing any number x with 0 yields x.</p>

<p>Bitwise ORing any number x with -1 yields -1.</p>

<h3 id="비트_XOR"><a id="Bitwise_XOR" name="Bitwise_XOR">^ (비트 XOR)</a></h3>

<p>Performs the XOR operation on each pair of bits. <code>a</code> XOR <code>b</code> yields 1 if <code>a</code> and <code>b</code> are different. The truth table for the XOR operation is:</p>

<table class="standard-table">
 <tbody>
  <tr>
   <td class="header">a</td>
   <td class="header">b</td>
   <td class="header">a XOR b</td>
  </tr>
  <tr>
   <td>0</td>
   <td>0</td>
   <td>0</td>
  </tr>
  <tr>
   <td>0</td>
   <td>1</td>
   <td>1</td>
  </tr>
  <tr>
   <td>1</td>
   <td>0</td>
   <td>1</td>
  </tr>
  <tr>
   <td>1</td>
   <td>1</td>
   <td>0</td>
  </tr>
 </tbody>
</table>

<pre>     9 (base 10) = 00000000000000000000000000001001 (base 2)
    14 (base 10) = 00000000000000000000000000001110 (base 2)
                   --------------------------------
14 ^ 9 (base 10) = 00000000000000000000000000000111 (base 2) = 7 (base 10)
</pre>

<p>Bitwise XORing any number x with 0 yields x.</p>

<p>Bitwise XORing any number x with -1 yields ~x.</p>

<h3 id="비트_NOT"><a id="Bitwise_NOT" name="Bitwise_NOT">~ (비트 NOT)</a></h3>

<p>Performs the NOT operator on each bit. NOT <code>a</code> yields the inverted value (a.k.a. one's complement) of <code>a</code>. The truth table for the NOT operation is:</p>

<table class="standard-table">
 <tbody>
  <tr>
   <td class="header">a</td>
   <td class="header">NOT a</td>
  </tr>
  <tr>
   <td>0</td>
   <td>1</td>
  </tr>
  <tr>
   <td>1</td>
   <td>0</td>
  </tr>
 </tbody>
</table>

<pre> 9 (base 10) = 00000000000000000000000000001001 (base 2)
               --------------------------------
~9 (base 10) = 11111111111111111111111111110110 (base 2) = -10 (base 10)
</pre>

<p>Bitwise NOTing any number x yields -(x + 1). For example, ~5 yields -6.</p>

<h2 id="비트_시프트_연산자">비트 시프트 연산자</h2>

<p>The bitwise shift operators take two operands: the first is a quantity to be shifted, and the second specifies the number of bit positions by which the first operand is to be shifted. The direction of the shift operation is controlled by the operator used.</p>

<p>Shift operators convert their operands to 32-bit integers in big-endian order and return a result of the same type as the left operand. The right operand should be less than 32, but if not only the low five bits will be used.</p>

<h3 id="&lt;&lt;_Left_shift"><a id="Left_shift" name="Left_shift">&lt;&lt; (Left shift)</a></h3>

<p>This operator shifts the first operand the specified number of bits to the left. Excess bits shifted off to the left are discarded. Zero bits are shifted in from the right.</p>

<p>For example, <code>9 &lt;&lt; 2</code> yields 36:</p>

<pre>     9 (base 10): 00000000000000000000000000001001 (base 2)
                  --------------------------------
9 &lt;&lt; 2 (base 10): 00000000000000000000000000100100 (base 2) = 36 (base 10)
</pre>

<p>Bitwise shifting any number <strong>x</strong> to the left by <strong>y</strong> bits yields <strong>x * 2^y</strong>.</p>

<h3 id=">>_Sign-propagating_right_shift"><a id="Right_shift" name="Right_shift">&gt;&gt; (Sign-propagating right shift)</a></h3>

<p>This operator shifts the first operand the specified number of bits to the right. Excess bits shifted off to the right are discarded. Copies of the leftmost bit are shifted in from the left. Since the new leftmost bit has the same value as the previous leftmost bit, the sign bit (the leftmost bit) does not change. Hence the name "sign-propagating".</p>

<p>For example, <code>9 &gt;&gt; 2</code> yields 2:</p>

<pre>     9 (base 10): 00000000000000000000000000001001 (base 2)
                  --------------------------------
9 &gt;&gt; 2 (base 10): 00000000000000000000000000000010 (base 2) = 2 (base 10)
</pre>

<p>Likewise, <code>-9 &gt;&gt; 2</code> yields -3, because the sign is preserved:</p>

<pre>     -9 (base 10): 11111111111111111111111111110111 (base 2)
                   --------------------------------
-9 &gt;&gt; 2 (base 10): 11111111111111111111111111111101 (base 2) = -3 (base 10)
</pre>

<h3 id=">>>_Zero-fill_right_shift"><a id="Unsigned_right_shift" name="Unsigned_right_shift">&gt;&gt;&gt; (Zero-fill right shift)</a></h3>

<p>This operator shifts the first operand the specified number of bits to the right. Excess bits shifted off to the right are discarded. Zero bits are shifted in from the left. The sign bit becomes 0, so the result is always non-negative.</p>

<p>For non-negative numbers, zero-fill right shift and sign-propagating right shift yield the same result. For example, <code>9 &gt;&gt;&gt; 2</code> yields 2, the same as <code>9 &gt;&gt; 2</code>:</p>

<pre>      9 (base 10): 00000000000000000000000000001001 (base 2)
                   --------------------------------
9 &gt;&gt;&gt; 2 (base 10): 00000000000000000000000000000010 (base 2) = 2 (base 10)
</pre>

<p>However, this is not the case for negative numbers. For example, <code>-9 &gt;&gt;&gt; 2</code> yields 1073741821, which is different than <code>-9 &gt;&gt; 2</code> (which yields -3):</p>

<pre>      -9 (base 10): 11111111111111111111111111110111 (base 2)
                    --------------------------------
-9 &gt;&gt;&gt; 2 (base 10): 00111111111111111111111111111101 (base 2) = 1073741821 (base 10)
</pre>

<h2 id="예제">예제</h2>

<h3 id="Flags_and_bitmasks">Flags and bitmasks</h3>

<p>The bitwise logical operators are often used to create, manipulate, and read sequences of <em>flags</em>, which are like binary variables. Variables could be used instead of these sequences, but binary flags take much less memory (by a factor of 32).</p>

<p>Suppose there are 4 flags:</p>

<ul>
 <li>flag A: we have an ant problem</li>
 <li>flag B: we own a bat</li>
 <li>flag C: we own a cat</li>
 <li>flag D: we own a duck</li>
</ul>

<p>These flags are represented by a sequence of bits: DCBA. When a flag is <em>set</em>, it has a value of 1. When a flag is <em>cleared</em>, it has a value of 0. Suppose a variable <code>flags</code> has the binary value 0101:</p>

<pre class="brush: js">var flags = 5;   // binary 0101
</pre>

<p>This value indicates:</p>

<ul>
 <li>flag A is true (we have an ant problem);</li>
 <li>flag B is false (we don't own a bat);</li>
 <li>flag C is true (we own a cat);</li>
 <li>flag D is false (we don't own a duck);</li>
</ul>

<p>Since bitwise operators are 32-bit, 0101 is actually 00000000000000000000000000000101, but the preceding zeroes can be neglected since they contain no meaningful information.</p>

<p>A <em>bitmask</em> is a sequence of bits that can manipulate and/or read flags. Typically, a "primitive" bitmask for each flag is defined:</p>

<pre class="brush: js">var FLAG_A = 1; // 0001
var FLAG_B = 2; // 0010
var FLAG_C = 4; // 0100
var FLAG_D = 8; // 1000
</pre>

<p>New bitmasks can be created by using the bitwise logical operators on these primitive bitmasks. For example, the bitmask 1011 can be created by ORing FLAG_A, FLAG_B, and FLAG_D:</p>

<pre class="brush: js">var mask = FLAG_A | FLAG_B | FLAG_D; // 0001 | 0010 | 1000 =&gt; 1011
</pre>

<p>Individual flag values can be extracted by ANDing them with a bitmask, where each bit with the value of one will "extract" the corresponding flag. The bitmask <em>masks</em> out the non-relevant flags by ANDing with zeros (hence the term "bitmask"). For example, the bitmask 0100 can be used to see if flag C is set:</p>

<pre class="brush: js">// if we own a cat
if (flags &amp; FLAG_C) { // 0101 &amp; 0100 =&gt; 0100 =&gt; true
   // do stuff
}
</pre>

<p>A bitmask with multiple set flags acts like an "either/or". For example, the following two are equivalent:</p>

<pre class="brush: js">// if we own a bat or we own a cat
if ((flags &amp; FLAG_B) || (flags &amp; FLAG_C)) { // (0101 &amp; 0010) || (0101 &amp; 0100) =&gt; 0000 || 0100 =&gt; true
   // do stuff
}
</pre>

<pre class="brush: js">// if we own a bat or cat
var mask = FLAG_B | FLAG_C; // 0010 | 0100 =&gt; 0110
if (flags &amp; mask) { // 0101 &amp; 0110 =&gt; 0100 =&gt; true
   // do stuff
}
</pre>

<p>Flags can be set by ORing them with a bitmask, where each bit with the value one will set the corresponding flag, if that flag isn't already set. For example, the bitmask 1100 can be used to set flags C and D:</p>

<pre class="brush: js">// yes, we own a cat and a duck
var mask = FLAG_C | FLAG_D; // 0100 | 1000 =&gt; 1100
flags |= mask;   // 0101 | 1100 =&gt; 1101
</pre>

<p>Flags can be cleared by ANDing them with a bitmask, where each bit with the value zero will clear the corresponding flag, if it isn't already cleared. This bitmask can be created by NOTing primitive bitmasks. For example, the bitmask 1010 can be used to clear flags A and C:</p>

<pre class="brush: js">// no, we don't have an ant problem or own a cat
var mask = ~(FLAG_A | FLAG_C); // ~0101 =&gt; 1010
flags &amp;= mask;   // 1101 &amp; 1010 =&gt; 1000
</pre>

<p>The mask could also have been created with <code>~FLAG_A &amp; ~FLAG_C</code> (De Morgan's law):</p>

<pre class="brush: js">// no, we don't have an ant problem, and we don't own a cat
var mask = ~FLAG_A &amp; ~FLAG_C;
flags &amp;= mask;   // 1101 &amp; 1010 =&gt; 1000
</pre>

<p>Flags can be toggled by XORing them with a bitmask, where each bit with the value one will toggle the corresponding flag. For example, the bitmask 0110 can be used to toggle flags B and C:</p>

<pre class="brush: js">// if we didn't have a bat, we have one now, and if we did have one, bye-bye bat
// same thing for cats
var mask = FLAG_B | FLAG_C;
flags = flags ^ mask;   // 1100 ^ 0110 =&gt; 1010
</pre>

<p>Finally, the flags can all be flipped with the NOT operator:</p>

<pre class="brush: js">// entering parallel universe...
flags = ~flags;    // ~1010 =&gt; 0101
</pre>

<h3 id="Conversion_snippets">Conversion snippets</h3>

<p>Convert a binary <code><a href="/en-US/docs/JavaScript/Reference/Global_Objects/String" title="/en-US/docs/JavaScript/Reference/Global_Objects/String">string</a></code> to a decimal <code><a href="/en-US/docs/JavaScript/Reference/Global_Objects/Number" title="/en-US/docs/JavaScript/Reference/Global_Objects/Number">number</a></code>:</p>

<pre class="brush: js">var sBinString = "1011";
var nMyNumber = parseInt(sBinString, 2);
alert(nMyNumber); // prints 11, i.e. 1011
</pre>

<p>Convert a decimal <code><a href="/en-US/docs/JavaScript/Reference/Global_Objects/Number" title="/en-US/docs/JavaScript/Reference/Global_Objects/Number">number</a></code> to a binary <code><a href="/en-US/docs/JavaScript/Reference/Global_Objects/String" title="/en-US/docs/JavaScript/Reference/Global_Objects/String">string</a></code>:</p>

<pre class="brush: js">var nMyNumber = 11;
var sBinString = nMyNumber.toString(2);
alert(sBinString); // prints 1011, i.e. 11
</pre>

<h3 id="Automate_Mask_Creation">Automate Mask Creation</h3>

<p>If you have to create many masks from some <code><a href="/en-US/docs/JavaScript/Reference/Global_Objects/Boolean" title="/en-US/docs/JavaScript/Reference/Global_Objects/Boolean">boolean</a></code> values, you can automatize the process:</p>

<pre class="brush: js">function createMask () {
  var nMask = 0, nFlag = 0, nLen = arguments.length &gt; 32 ? 32 : arguments.length;
  for (nFlag; nFlag &lt; nLen; nMask |= arguments[nFlag] &lt;&lt; nFlag++);
  return nMask;
}
var mask1 = createMask(true, true, false, true); // 11, i.e.: 1011
var mask2 = createMask(false, false, true); // 4, i.e.: 0100
var mask3 = createMask(true); // 1, i.e.: 0001
// etc.

alert(mask1); // prints 11, i.e.: 1011
</pre>

<h3 id="Reverse_algorithm_an_array_of_booleans_from_a_mask">Reverse algorithm: an array of booleans from a mask</h3>

<p>If you want to create an <code><a href="/en-US/docs/JavaScript/Reference/Global_Objects/Array" title="/en-US/docs/JavaScript/Reference/Global_Objects/Array">array</a></code> of <code><a href="/en-US/docs/JavaScript/Reference/Global_Objects/Boolean" title="/en-US/docs/JavaScript/Reference/Global_Objects/Boolean">booleans</a></code> from a mask you can use this code:</p>

<pre class="brush: js">function arrayFromMask (nMask) {
  // nMask must be between -2147483648 and 2147483647
  if (nMask &gt; 0x7fffffff || nMask &lt; -0x80000000) { throw new TypeError("arrayFromMask - out of range"); }
  for (var nShifted = nMask, aFromMask = []; nShifted; aFromMask.push(Boolean(nShifted &amp; 1)), nShifted &gt;&gt;&gt;= 1);
  return aFromMask;
}

var array1 = arrayFromMask(11);
var array2 = arrayFromMask(4);
var array3 = arrayFromMask(1);

alert("[" + array1.join(", ") + "]");
// prints "[true, true, false, true]", i.e.: 11, i.e.: 1011
</pre>

<p>You can test both algorithms at the same time…</p>

<pre class="brush: js">var nTest = 19; // our custom mask
var nResult = createMask.apply(this, arrayFromMask(nTest));

alert(nResult); // 19
</pre>

<p>For didactic purpose only (since there is the <code><a href="/en-US/docs/JavaScript/Reference/Global_Objects/Number/toString" title="/en-US/docs/JavaScript/Reference/Global_Objects/Number/toString">Number.toString(2)</a></code> method), we show how it is possible to modify the <code>arrayFromMask</code> algorithm in order to create a <code><a href="/en-US/docs/JavaScript/Reference/Global_Objects/String" title="/en-US/docs/JavaScript/Reference/Global_Objects/String">string</a></code> containing the binary representation of a <code><a href="/en-US/docs/JavaScript/Reference/Global_Objects/Number" title="/en-US/docs/JavaScript/Reference/Global_Objects/Number">number</a></code>, rather than an <code><a href="/en-US/docs/JavaScript/Reference/Global_Objects/Array" title="/en-US/docs/JavaScript/Reference/Global_Objects/Array">array</a></code> of <code><a href="/en-US/docs/JavaScript/Reference/Global_Objects/Boolean" title="/en-US/docs/JavaScript/Reference/Global_Objects/Boolean">booleans</a></code>:</p>

<pre class="brush: js">function createBinaryString (nMask) {
  // nMask must be between -2147483648 and 2147483647
  for (var nFlag = 0, nShifted = nMask, sMask = ""; nFlag &lt; 32; nFlag++, sMask += String(nShifted &gt;&gt;&gt; 31), nShifted &lt;&lt;= 1);
  return sMask;
}

var string1 = createBinaryString(11);
var string2 = createBinaryString(4);
var string3 = createBinaryString(1);

alert(string1);
// prints 00000000000000000000000000001011, i.e. 11
</pre>

<h2 id="명세">명세</h2>

<table class="standard-table">
 <tbody>
  <tr>
   <th scope="col">Specification</th>
  </tr>
  <tr>
   <td>{{SpecName('ESDraft', '#sec-bitwise-not-operator', 'Bitwise NOT Operator')}}</td>
  </tr>
  <tr>
   <td>{{SpecName('ESDraft', '#sec-binary-bitwise-operators', 'Binary Bitwise Operators')}}</td>
  </tr>
  <tr>
   <td>{{SpecName('ESDraft', '#sec-bitwise-shift-operators', 'Bitwise Shift Operators')}}</td>
  </tr>
 </tbody>
</table>

<h2 id="브라우저_호환성">브라우저 호환성</h2>

<p>{{Compat("javascript.operators.bitwise")}}</p>

<h2 id="같이_보기">같이 보기</h2>

<ul>
 <li><a href="/ko/docs/Web/JavaScript/Reference/Operators/%EB%85%BC%EB%A6%AC_%EC%97%B0%EC%82%B0%EC%9E%90(Logical_Operators)">논리 연산자</a></li>
</ul>